Máterias Aqui.

sexta-feira, 27 de junho de 2008

Números Complexos I

Um pouco de história

No século XVI , os matemáticos Cardano e Bombelli, entre outros, realizaram alguns progressos no estudo das raízes quadradas de números negativos. Dois séculos depois, estes estudos foram ampliados por Wesses, Argand e Gauss. Estes matemáticos são considerados os criadores da teoria dos números complexos. A teoria dos Números Complexos, tem ampla aplicação nos estudos mais avançados de Eletricidade.

Unidade imaginária: define-se a unidade imaginária , representada pela letra i , como sendo a raiz quadrada
de -1. Pode-se escrever então: i = Ö-1 .
Observe que a partir dessa definição , passam a ter sentido certas operações com números reais , a exemplo das raízes quadradas de números negativos .

Ex: Ö-16 = Ö16 . Ö-1 = 4.i = 4i

Potências de i :
i0 = 1
i1 = i
i2 = -1
i3 = i2 . i = -i
i4 = (i2)2 = (-1)2 = 1
i5 = i4 . i = 1.i = i
i6 = i5 . i = i . i = i2 = -1
i7 = i6 . i = -i , etc.

Percebe-se que os valores das potências de i se repetem no ciclo
1 , i , -1 , -i , de quatro em quatro a partir do expoente zero.
Portanto, para se calcular qualquer potência inteira de i , basta eleva-lo ao resto da divisão do expoente por 4. Assim , podemos resumir:

i4n = ir onde r = 0 , 1 , 2 ou 3. (r é o resto da divisão de n por 4).

Exemplo: Calcule i2001
Ora, dividindo 2001 por 4, obtemos resto igual a 1. Logo i2001 = i1 = i .

NÚMERO COMPLEXO

Definição: Dados dois números reais a e b , define-se o número complexo z como sendo:
z = a + bi , onde i = Ö-1 é a unidade imaginária .
Exs: z = 2 + 3i ( a = 2 e b = 3)
w = -3 -5i (a = -3 e b = -5)
u = 100i ( a = 0 e b = 100)

NOTAS:
a) diz-se que z = a + bi é a forma binômia ou algébrica do complexo z .
b) dado o número complexo z = a + bi , a é denominada parte real e b parte imaginária.
Escreve-se : a = Re(z) ; b = Im(z) .
c) se em z = a + bi tivermos a = 0 e b diferente de zero, dizemos que z é um imaginário puro . Ex: z = 3i .
d)se em z = a + bi tivermos b = 0 , dizemos que z é um número real .
Ex: z = 5 = 5 + 0i .
e)do item (c) acima concluímos que todo número real é complexo, ou seja,
o conjunto dos números reais é um subconjunto do conjunto dos números complexos
.
f) um número complexo z = a + bi pode também ser representado como um par ordenado z = (a,b) .

Exercícios Resolvidos:

1) Sendo z = (m2 - 5m + 6) + (m2 - 1) i , determine m de modo que z seja um imaginário puro.

Solução: Para que o complexo z seja um imaginário puro, sua parte real deve ser nula ou seja, devemos ter
m2 - 5m + 6 = 0, que resolvida encontramos m=2 ou m=3.

2) Determine a parte real do número complexo z = (1 + i)12 .

Solução: Observe que (1 + i)12 = [(1 + i)2]6 . Nestas condições, vamos desenvolver o produto notável
(1 + i)2 = 12 + 2.i + i2 = 1 + 2i -1 = 2i \ (1 + i)2 = 2i (isto é uma propriedade importante, que vale a pena ser memorizada).
Substituindo na expressão dada, vem:
(1 + i)12 = [(1 + i)2]6 = (2i)6 = 26.i6 = 64.(i2)3 = 64.(-1)3 = - 64.
Portanto, o número complexo dado fica z = - 64 = - 64 + 0i e portanto sua parte real é igual a -64.

3) Determine a parte imaginária do número complexo z = (1 - i)200 .

Solução: Podemos escrever o complexo z como: z = [(1 - i)2]100 . Desenvolvendo o produto notável
(1 - i)2 = 12 - 2.i + i2 = 1 - 2i -1 = - 2i \ (1 - i)2 = - 2i (isto é uma propriedade importante, que merece ser memorizada).
Substituindo na expressão dada, vem:
z = (- 2i)100 = (- 2)100. i100 = 2100 . i100 = 2100 . ( i2 )50 = 2100. (- 1)50 = 2100 . 1 = 2100.
Logo, o número complexo z é igual a 2100 e portanto um número real. Daí concluímos que a sua parte imaginária é zero.

CONJUGADO DE UM NÚMERO COMPLEXO

Dado um número complexo z = a + bi , chama-se conjugado de z e representa-se por , a um outro número complexo que possui a mesma parte real de z e a parte imaginária o simétrico aditivo da parte imaginária de z .

z = a + bi ® = a - bi
Ex: z = 3 + 5i ; = 3 - 5i

Obs : Sabemos que os números complexos podem também ser representados na forma de pares ordenados . Assim é que z = a + bi = (a,b).
Portanto , por analogia com o sistema de coordenadas cartesianas , pode-se representar graficamente qualquer número complexo z num sistema de coordenadas cartesianas , bastando marcar a parte real a no eixo horizontal e a parte imaginária b no eixo vertical . Neste caso , o eixo horizontal é chamado eixo real e o eixo vertical é chamado eixo imaginário. O plano cartesiano, neste caso , denomina-se plano de Argand-Gauss.
O ponto que representa o número complexo z , denomina-se afixo de z.

DIVISÃO DE NÚMEROS COMPLEXOS NA FORMA BINÔMIA

Regra : Para dividir um número complexo z por outro w ¹ 0 , basta multiplicar numerador e denominador pelo complexo conjugado do denominador .

Ex: = = = 0,8 + 0,1 i

Agora que você estudou a teoria, tente resolver os seguintes exercícios:

1 - Calcule o número complexo i126 + i-126 + i31 - i180

2 - Sendo z = 5i + 3i2 - 2i3 + 4i27 e w = 2i12 - 3i15 ,
calcule Im(z).w + Im(w).z .

3 - UCMG - O número complexo 2z, tal que 5z + = 12 + 6i é:

4 - UCSal - Para que o produto (a+i). (3-2i) seja real, a deve ser:

5 - UFBA - Sendo a = -4 + 3i , b = 5 - 6i e c = 4 - 3i , o valor de ac+b é:

6 - Mackenzie-SP - O valor da expressão y = i + i2 + i3 + ... + i1001 é:

7) Determine o número natural n tal que (2i)n + (1 + i)2n + 16i = 0.
Resp: 3
Clique aqui para ver a solução.

8) Calcule [(1+i)80 + (1+i)82] : i96.240
Resp: 1+2i

9) Se os números complexos z e w são tais que z = 2-5i e w = a+bi , sabendo-se que z+w é um número real e z.w .é um imaginário puro , pede-se calcular o valor de b2 - 2a.
Resp: 50

10) Se o número complexo z = 1-i é uma das raízes da equação x10 + a = 0 , então calcule o valor de a.
Resp: 32i

11) Determine o número complexo z tal que iz + 2 . + 1 - i = 0.

12 - UEFS-92.1 - O valor da expressão E = x-1 + x2, para x = 1 - i , é:
a)-3i
b)1-i
c) 5/2 + (5/2)i
d) 5/2 - (3/2)i
e) ½ - (3/2)i

13 -UEFS-93.2 - Simplificando-se a expressão E = i7 + i5 + ( i3 + 2i4 )2 , obtêm-se:
a) -1+2i
b) 1+2i
c) 1 - 2i
d) 3 - 4i
e) 3 + 4i

14 - UEFS-93.2 - Se m - 1 + ni = (3+i).(1 + 3i), então m e n são respectivamente:
a) 1 e 10
b) 5 e 10
c) 7 e 9
d) 5 e 9
e) 0 e -9

15 - UEFS-94.1 - A soma de um numero complexo z com o triplo do seu conjugado é igual a -8 - 6i. O módulo de z é:
a) Ö 13
b) Ö 7
c) 13
d) 7
e) 5

16 - FESP/UPE - Seja z = 1+i , onde i é a unidade imaginária. Podemos afirmar que z8 é igual a:
a) 16
b) 161
c) 32
d) 32i
e) 32+16i

17 - UCSal - Sabendo que (1+i)22 = 2i, então o valor da expressão
y = (1+i)48 - (1+i)49 é:
a) 1 + i
b) -1 + i
c) 224 . i
d) 248 . i
e) -224 . i

GABARITO:

1) -3 - i
2) -3 + 18i
3) 4 + 3i
4) 3/2
5) -2 + 18i
6) i
7) 3
8) 1 + 2i
9) 50
10) 32i
11) -1 - i

12) B
13) D
14) A
15) A
16) A
17) E

Noções de Probabilidade

1 – Introdução

Chama-se experimento aleatório àquele cujo resultado é imprevisível, porém pertence necessariamente a um conjunto de resultados possíveis denominado espaço amostral.
Qualquer subconjunto desse espaço amostral é denominado evento.
Se este subconjunto possuir apenas um elemento, o denominamos evento elementar.

Por exemplo, no lançamento de um dado, o nosso espaço amostral seria U = {1, 2, 3, 4, 5, 6}.

Exemplos de eventos no espaço amostral U:
A: sair número maior do que 4: A = {5, 6}
B: sair um número primo e par: B = {2}
C: sair um número ímpar: C = {1, 3, 5}

Nota: O espaço amostral é também denominado espaço de prova.
Trataremos aqui dos espaços amostrais equiprováveis, ou seja, aqueles onde os eventos elementares possuem a mesma chance de ocorrerem.
Por exemplo, no lançamento do dado acima, supõe-se que sendo o dado perfeito, as chances de sair qualquer número de 1 a 6 são iguais. Temos então um espaço equiprovável.

Em oposição aos fenômenos aleatórios, existem os fenômenos determinísticos, que são aqueles cujos resultados são previsíveis, ou seja, temos certeza dos resultados a serem obtidos.

Normalmente existem diversas possibilidades possíveis de ocorrência de um fenômeno aleatório, sendo a medida numérica da ocorrência de cada uma dessas possibilidades, denominada Probabilidade.

Consideremos uma urna que contenha 49 bolas azuis e 1 bola branca. Para uma retirada, teremos duas possibilidades: bola azul ou bola branca. Percebemos entretanto que será muito mais freqüente obtermos numa retirada, uma bola azul, resultando daí, podermos afirmar que o evento "sair bola azul" tem maior probabilidade de ocorrer, do que o evento "sair bola branca".

2 – Conceito elementar de Probabilidade

Seja U um espaço amostral finito e equiprovável e A um determinado evento ou seja, um subconjunto de U. A probabilidade p(A) de ocorrência do evento A será calculada pela fórmula

p(A) = n(A) / n(U)

onde:
n(A) = número de elementos de A e n(U) = número de elementos do espaço de prova U.

Vamos utilizar a fórmula simples acima, para resolver os seguintes exercícios introdutórios:

1.1 - Considere o lançamento de um dado. Calcule a probabilidade de:

a) sair o número 3:
Temos U = {1, 2, 3, 4, 5, 6} [n(U) = 6] e A = {3} [n(A) = 1]. Portanto, a probabilidade procurada será igual a p(A) = 1/6.

b) sair um número par: agora o evento é A = {2, 4, 6} com 3 elementos; logo a probabilidade procurada será p(A) = 3/6 = 1/2.

c) sair um múltiplo de 3: agora o evento A = {3, 6} com 2 elementos; logo a probabilidade procurada será p(A) = 2/6 = 1/3.

d) sair um número menor do que 3: agora, o evento A = {1, 2} com dois elementos. Portanto,p(A) = 2/6 = 1/3.

e) sair um quadrado perfeito: agora o evento A = {1,4} com dois elementos. Portanto, p(A) = 2/6 = 1/3.

1.2 - Considere o lançamento de dois dados. Calcule a probabilidade de:

a) sair a soma 8
Observe que neste caso, o espaço amostral U é constituído pelos pares ordenados (i,j), onde i = número no dado 1 e j = número no dado 2.
É evidente que teremos 36 pares ordenados possíveis do tipo (i, j) onde i = 1, 2, 3, 4, 5, ou 6, o mesmo ocorrendo com j.
As somas iguais a 8, ocorrerão nos casos:(2,6),(3,5),(4,4),(5,3) e (6,2). Portanto, o evento "soma igual a 8" possui 5 elementos. Logo, a probabilidade procurada será igual a p(A) = 5/36.

b) sair a soma 12
Neste caso, a única possibilidade é o par (6,6). Portanto, a probabilidade procurada será igual a p(A) = 1/36.

1.3 – Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule as probabilidades seguintes:

a) sair bola azul
p(A) = 6/20 = 3/10 = 0,30 = 30%

b) sair bola vermelha
p(A) = 10/20 =1/2 = 0,50 = 50%

c) sair bola amarela
p(A) = 4/20 = 1/5 = 0,20 = 20%

Vemos no exemplo acima, que as probabilidades podem ser expressas como porcentagem. Esta forma é conveniente, pois permite a estimativa do número de ocorrências para um número elevado de experimentos. Por exemplo, se o experimento acima for repetido diversas vezes, podemos afirmar que em aproximadamente 30% dos casos, sairá bola azul, 50% dos casos sairá bola vermelha e 20% dos casos sairá bola amarela. Quanto maior a quantidade de experimentos, tanto mais a distribuição do número de ocorrências se aproximará dos percentuais indicados.

3 – Propriedades

P1: A probabilidade do evento impossível é nula.
Com efeito, sendo o evento impossível o conjunto vazio (Ø), teremos:
p(Ø) = n(Ø)/n(U) = 0/n(U) = 0
Por exemplo, se numa urna só existem bolas brancas, a probabilidade de se retirar uma bola verde (evento impossível, neste caso) é nula.

P2: A probabilidade do evento certo é igual a unidade.
Com efeito, p(A) = n(U)/n(U) = 1
Por exemplo, se numa urna só existem bolas vermelhas, a probabilidade de se retirar uma bola vermelha (evento certo, neste caso) é igual a 1.

P3: A probabilidade de um evento qualquer é um número real situado no intervalo real [0, 1].
Esta propriedade, decorre das propriedades 1 e 2 acima.

P4: A soma das probabilidades de um evento e do seu evento complementar é igual a unidade.
Seja o evento A e o seu complementar A'. Sabemos que A U A' = U.
n(A U A') = n(U) e, portanto, n(A) + n(A') = n(U).
Dividindo ambos os membros por n(U), vem:
n(A)/n(U) + n(A')/n(U) = n(U)/n(U), de onde conclui-se:
p(A) + p(A') = 1

Nota: esta propriedade simples, é muito importante pois facilita a solução de muitos problemas aparentemente complicados. Em muitos casos, é mais fácil calcular a probabilidade do evento complementar e, pela propriedade acima, fica fácil determinar a probabilidade do evento.

P5: Sendo A e B dois eventos, podemos escrever:
p(A U B) = p(A) + p(B) – p(A
Ç B)
Observe que se A ÇB= Ø (ou seja, a interseção entre os conjuntos A e B é o conjunto vazio), então p(A U B) = p(A) + p(B).

Com efeito, já sabemos da Teoria dos Conjuntos que
n(A U B) = n(A) + n(B) – n(A ÇB)
Dividindo ambos os membros por n(U) e aplicando a definição de probabilidade, concluímos rapidamente a veracidade da fórmula acima.

Exemplo:

Em uma certa comunidade existem dois jornais J e P. Sabe-se que 5000 pessoas são assinantes do jornal J, 4000 são assinantes de P, 1200 são assinantes de ambos e 800 não lêem jornal. Qual a probabilidade de que uma pessoa escolhida ao acaso seja assinante de ambos os jornais?

SOLUÇÃO:
Precisamos calcular o número de pessoas do conjunto universo, ou seja, nosso espaço amostral. Teremos:
n(U) = N(J U P) + N.º de pessoas que não lêem jornais.
n(U) = n(J) + N(P) – N(J ÇP) + 800
n(U) = 5000 + 4000 – 1200 + 800
n(U) = 8600
Portanto, a probabilidade procurada será igual a:
p = 1200/8600 = 12/86 = 6/43.
Logo, p = 6/43 = 0,1395 = 13,95%.

A interpretação do resultado é a seguinte: escolhendo-se ao acaso uma pessoa da comunidade, a probabilidade de que ela seja assinante de ambos os jornais é de aproximadamente 14%.(contra 86% de probabilidade de não ser).

4 – Probabilidade condicional

Considere que desejamos calcular a probabilidade da ocorrência de um evento A, sabendo-se de antemão que ocorreu um certo evento B. Pela definição de probabilidade vista anteriormente, sabemos que a probabilidade de A deverá ser calculada, dividindo-se o número de elementos de elementos de A que também pertencem a B, pelo número de elementos de B. A probabilidade de ocorrer A, sabendo-se que já ocorreu B, é denominada Probabilidade condicional e é indicada por p(A/B) – probabilidade de ocorrer A sabendo-se que já ocorreu B – daí, o nome de probabilidade condicional.

Teremos então:

p(A/B) = n(A Ç B)/ n(B)

onde A Ç B = interseção dos conjuntos A e B.

Esta fórmula é importante, mas pode ser melhorada. Vejamos:
Ora, a expressão acima, pode ser escrita sem nenhum prejuízo da elegância, nem do rigor, como:
p(A/B) = [n(A ÇB)/n(U)] . [n(U)/n(B)]
p(A/B) = p(A ÇB) . 1/p(B)
Vem, então: P(A/B) = p(A Ç B)/p(B), de onde concluímos finalmente:

p(A ÇB) = p(A/B).p(B)

Esta fórmula é denominada Lei das Probabilidades Compostas.
Esta importante fórmula, permite calcular a probabilidade da ocorrência simultânea dos eventos A e B, sabendo-se que já ocorreu o evento B.
Se a ocorrência do evento B, não mudar a probabilidade da ocorrência do evento A, então p(A/B) = p(A) e, neste caso, os eventos são ditos independentes, e a fórmula acima fica:

p(A ÇB) = p(A) . p(B)

Podemos então afirmar, que a probabilidade de ocorrência simultânea de eventos independentes, é igual ao produto das probabilidades dos eventos considerados.

Exemplo:

Uma urna possui cinco bolas vermelhas e duas bolas brancas.
Calcule as probabilidades de:

a) em duas retiradas, sem reposição da primeira bola retirada, sair uma bola vermelha (V) e depois uma bola branca (B).

Solução:
p(V Ç B) = p(V) . p(B/V)
p(V) = 5/7 (5 bolas vermelhas de um total de 7).
Supondo que saiu bola vermelha na primeira retirada, ficaram 6 bolas na urna. Logo:
p(B/V) = 2/6 = 1/3
Da lei das probabilidades compostas, vem finalmente que:
P(V Ç B) = 5/7 . 1/3 = 5/21 = 0,2380 = 23,8%

b) em duas retiradas, com reposição da primeira bola retirada, sair uma bola vermelha e depois uma bola branca.

Solução:
Com a reposição da primeira bola retirada, os eventos ficam independentes. Neste caso, a probabilidade buscada poderá ser calculada como:
P(V Ç B) = p(V) . p(B) = 5/7 . 2/7 = 10/49 = 0,2041 = 20,41%

Observe atentamente a diferença entre as soluções dos itens (a) e (b) acima, para um entendimento perfeito daquilo que procuramos transmitir.

Matrizes e Determinantes II

1 - Definições:

1.1 - Chama-se Menor Complementar ( D ij ) de um elemento aij de uma matriz quadrada A, ao determinante que se obtém eliminando-se a linha i e a coluna j da matriz.
Assim, dada a matriz quadrada de terceira ordem (3x3) A a seguir :

Podemos escrever:
D23 = menor complementar do elemento a23 = 9 da matriz A . Pela definição, D23 será igual ao determinante que se obtém de A, eliminando-se a linha 2 e a coluna 3, ou seja:

Da mesma forma determinaríamos D11, D12, D13, D21, D22, D31, D32 e D33. Faça os cálculos como exercício!

1.2 - Cofator de um elemento aij de uma matriz : cof ( aij ) = (-1 ) i+j . Dij .
Assim por exemplo, o cofator do elemento a23 = 9 da matriz do exemplo anterior, seria igual a:
cof(a23) = (-1)2+3 . D23 = (-1)5 . 10 = - 10.

2 - Teorema de Laplace

  • O determinante de uma matriz quadrada é igual à soma dos produtos dos elementos de uma fila qualquer (linha ou coluna) pelos respectivos cofatores.
  • Este teorema permite o cálculo do determinante de uma matriz de qualquer ordem. Como já conhecemos as regras práticas para o cálculo dos determinantes de ordem 2 e de ordem 3, só recorremos à este teorema para o cálculo de determinantes de 4ª ordem em diante. O uso desse teorema, possibilita abaixar a ordem do determinante. Assim, para o cálculo de um determinante de 4ª ordem, a sua aplicação resultará no cálculo de quatro determinantes de 3ª ordem. O cálculo de determinantes de 5ª ordem, já justifica o uso de planilhas eletrônicas, a exemplo do Excel for Windows, Lótus 1-2-3, entre outros.
  • Para expandir um determinante pelo teorema de Laplace, é mais prático escolher a fila (linha ou coluna) que contenha mais zeros, pois isto vai facilitar e reduzir o número de cálculos necessários.
  • Pierre Simon Laplace - (1749-1827) - Matemático e astrônomo francês.

3 - Cálculo da inversa de uma matriz.

a) A matriz inversa de uma matriz X , é a matriz X-1 , tal que X . X-1 = X-1 . X = In , onde In é a matriz identidade de ordem n.

b) Matriz dos cofatores da matriz A: é a matriz obtida substituindo-se cada elemento pelo seu respectivo cofator.
Símbolo: cof A .

c) Fórmula para o cálculo da inversa de uma matriz:

Onde: A-1 = matriz inversa de A;
det A = determinante da matriz A;
(cof A)T = matriz transposta da matriz dos cofatores de A .

Exercícios propostos

1 - Se A = ( aij ) é matriz quadrada de ordem 3 tal que aij = i - j então podemos afirmar que o seu determinante é igual a:

*a) 0
b) 1
c) 2
d) 3
e) -4

2 - UFBA-90 - Calcule o determinante da matriz:

Resp: 15

3 - Considere a matriz A = (aij)4x4 definida por aij = 1 se i ³ j e aij = i + j se i < j. Pede-se calcular a soma dos elementos da diagonal secundária.
Resp: 12

4 - As matrizes A e B , quadradas de ordem 3, são tais que B = 2.At , onde At é a matriz transposta de A.
Se o determinante de B é igual a 40 , então o determinante da matriz inversa de A é igual a:

*a) 1/5
b) 5
c) 1/40
d) 1/20
e) 20

5 - Dadas as matrizes A = (aij)3x4 e B = (bij)4x1 tais que aij = 2i + 3j e bij = 3i + 2j, o elemento
c12 da matriz C = A.B é:

a)12
b) 11
c) 10
d) 9
*e) inexistente

Matrizes e Determinantes I

Matriz de ordem m x n : Para os nossos propósitos, podemos considerar uma matriz como sendo uma tabela rectangular de números reais (ou complexos) dispostos em m linhas e n colunas. Diz-se então que a matriz tem ordem m x n (lê-se: ordem m por n)

Exemplos:

A = ( 1 0 2 -4 5)
® Uma linha e cinco colunas ( matriz de ordem 1 por 5 ou 1 x 5)

B é uma matriz de quatro linhas e uma coluna, portanto de ordem 4 x 1.

Notas:

1) se m = n , então dizemos que a matriz é quadrada de ordem n.

Exemplo:

A matriz X é uma matriz quadrada de ordem 3x3 , dita simplesmente de ordem 3 .

2) Uma matriz A de ordem m x n , pode ser indicada como A = (aij )mxn , onde aij é um elemento da linha i e coluna j da matriz.

Assim , por exemplo , na matriz X do exemplo anterior , temos a23 = 2 , a31 = 4 , a33 = 3 , a3,2 = 5 , etc.

3) Matriz Identidade de ordem n : In = ( aij )n x n onde aij = 1 se i = j e aij = 0 se i ¹ j .

Assim a matriz identidade de 2ª ordem ou seja de ordem 2x2 ou simplesmente de ordem 2 é:

A matriz identidade de 3ª ordem ou seja de ordem 3x3 ou simplesmente de ordem 3 é:

4) Transposta de um matriz A : é a matriz At obtida de A permutando-se as linhas pelas colunas e vice-versa.

Exemplo:

A matriz At é a matriz transposta da matriz A .

Notas:

4.1) se A = At , então dizemos que a matriz A é simétrica.

4.2) Se A = - At , dizemos que a matriz A é anti-simétrica.
É óbvio que as matrizes simétricas e anti-simétricas são quadradas .

4.3) sendo A uma matriz anti-simétrica , temos que A + At = 0 (matriz nula) .

Produto de matrizes

Para que exista o produto de duas matrizes A e B , o número de colunas de A , tem de ser igual ao número de linhas de B.

Amxn x Bnxq = Cmxq

Observe que se a matriz A tem ordem m x n e a matriz B tem ordem n x q , a matriz produto C tem ordem m x q .
Vamos mostrar o produto de matrizes com um exemplo:

Onde L1C1 é o produto escalar dos elementos da linha 1 da 1ª matriz pelos elementos da coluna1 da segunda matriz, obtido da seguinte forma:

L1C1 = 3.2 + 1.7 = 13. Analogamente, teríamos para os outros elementos:
L1C2 = 3.0 + 1.5 = 5
L1C3 = 3.3 + 1.8 = 17
L2C1 = 2.2 + 0.7 = 4
L2C2 = 2.0 + 0.5 = 0
L2C3 = 2.3 + 0.8 = 6
L3C1 = 4.2 + 6.7 = 50
L3C2 = 4.0 + 6.5 = 30
L3C3 = 4.3 + 6.8 = 60, e, portanto, a matriz produto será igual a:

Observe que o produto de uma matriz de ordem 3x2 por outra 2x3, resultou na matriz produto P
de ordem 3x3.
Nota: O produto de matrizes é uma operação não comutativa, ou seja: A x B
¹ B x A

DETERMINANTES

Entenderemos por determinante , como sendo um número ou uma função, associado a uma matriz quadrada , calculado de acordo com regras específicas .

É importante observar , que só as matrizes quadradas possuem determinante .

Regra para o cálculo de um determinante de 2ª ordem
Dada a matriz quadrada de ordem 2 a seguir:

  • O determinante de A será indicado por det(A) e calculado da seguinte forma :
  • det (A) = ½ A½ = ad - bc

Exemplo:

Ora, senx.senx + cosx.cosx = sen2x + cos2x = 1 ( Relação Fundamental da Trigonometria ) . Portanto, o determinante da matriz dada é igual à unidade.

Regra para o cálculo de um determinante de 3ª ordem ( Regra de SARRUS).

SARRUS (pronuncia-se Sarrí), cujo nome completo é Pierre Frederic SARRUS (1798 - 1861), foi professor na universidade francesa de Strasbourg. A regra de SARRUS, foi provavelmente escrita no ano de 1833.

Nota: São escassas, e eu diria, inexistentes, as informações sobre o Prof. SARRUS nos livros de Matemática do segundo grau, que apresentam (ou mais simplesmente apenas citam) o nome do professor, na forma REGRA DE SARRUS, para o cálculo dos determinantes de terceira ordem. Graças ao Prof. José Porto da Silveira - da Universidade Federal do Rio Grande do Sul, pudemos disponibilizar a valiosa informação acima! O Prof. SARRUS, foi premiado pela Academia Francesa de Ciências, pela autoria de um trabalho que versava sobre as integrais múltiplas, assunto que vocês estudarão na disciplina Cálculo III, quando chegarem à Universidade.

Para o cálculo de um determinante de 3ª ordem pela Regra de Sarrus, proceda da seguinte maneira:

1 - Reescreva abaixo da 3ª linha do determinante, a 1ª e 2ª linhas do determinante.

2 - Efetue os produtos em "diagonal" , atribuindo sinais negativos para os resultados à esquerda e sinal positivo para os resultados à direita.

3 - Efetue a soma algébrica. O resultado encontrado será o determinante associado à matriz dada.

Exemplo:

.2 3 5
.1 7 4

Portanto, o determinante procurado é o número real negativo .- 77.

Principais propriedades dos determinantes

P1) somente as matrizes quadradas possuem determinantes.

P2) o determinante de uma matriz e de sua transposta são iguais: det(A) = det( At ).

P3) o determinante que tem todos os elementos de uma fila iguais a zero , é nulo.
Obs: Chama-se FILA de um determinante, qualquer LINHA ou COLUNA.

P4) se trocarmos de posição duas filas paralelas de um determinante, ele muda de sinal.

P5) o determinante que tem duas filas paralelas iguais ou proporcionais, é nulo.

P6) multiplicando-se (ou dividindo-se) os elementos de uma fila por um número, o determinante fica multiplicado (ou dividido) por esse número.

P7) um determinante não se altera quando se substitui uma fila pela soma desta com uma fila paralela, multiplicada por um número real qualquer.

P8) determinante da matriz inversa : det( A-1) = 1/det(A) .

Se A-1 é a matriz inversa de A , então A . A-1 = A-1 . A = In , onde In é a matriz identidade de ordem n . Nestas condições , podemos afirmar que det(A.A-1) = det(In) e portanto igual a 1.
Logo , podemos também escrever det(A) . det(A-1) = 1 ;
logo , concluímos que: det(A-1) = 1 / det(A).

Notas:

1) se det(A) = 0 , não existe a matriz inversa A-1. Dizemos então que a matriz A é SINGULAR ou NÃO INVERSÍVEL .

2) se det A
¹ 0 , então a matriz inversa A-1 existe e é única . Dizemos então que a matriz A é INVERSÍVEL .

P9) Se todos os elementos situados de um mesmo lado da diagonal principal de uma matriz quadrada de ordem n , forem nulos (matriz triangular), o determinante é igual ao produto dos elementos da diagonal principal.

P10) Se A é matriz quadrada de ordem n e k Î R então det(k.A) = kn . det A

Exemplos:

1) Qual o determinante associado à matriz?

Observe que a 4ª linha da matriz é proporcional à 1ª linha (cada elemento da 4ª linha é obtido multiplicando os elementos da 1ª linha por 3). Portanto, pela propriedade P5 , o determinante da matriz dada é NULO.

2) Calcule o determinante:

Observe que a 2ª coluna é composta por zeros; FILA NULA Þ DETERMINANTE NULO , conforme propriedade P3 acima. Logo, D = 0.

3) Calcule o determinante:

Ora, pela propriedade P9 acima, temos: D = 2.5.9 = 90

Exercícios propostos:

1) As matrizes A e B , quadradas de ordem 3, são tais que B = 2.At , onde At é a matriz transposta de A. Se o determinante de B é igual a 40 , então o determinante da matriz inversa de A é igual a:

*a) 1/5
b) 5
c) 1/40
d) 1/20
e) 20

2) Seja a matriz A de ordem n onde aij = 2 para i = j e aij = 0 para i ¹ j .
Se det (3A) = 1296 , então n é igual a:
Resp: n = 4

3) Determine a soma dos elementos da diagonal principal da matriz A = ( aij )3 X 3 , onde
aij = i + j se i
³ j ou aij = i - j se i < j. Qual o determinante de A?
Resp: soma dos elementos da diagonal principal = 12 e determinante = 82

4) Se A = ( aij ) é matriz quadrada de ordem 3 tal que aij = i - j então podemos afirmar que o determinante da matriz 5 A é igual a:
Resp: zero

Logarítimos

1 - INTRODUÇÃO

O conceito de logaritmo foi introduzido pelo matemático escocês John Napier (1550-1617) e aperfeiçoado pelo inglês Henry Briggs (1561-1630). A descoberta dos logaritmos deveu-se sobretudo à grande necessidade de simplificar os cálculos excessivamente trabalhosos para a época, principalmente na área da astronomia, entre outras. Através dos logaritmos, pode-se transformar as operações de multiplicação em soma, de divisão em subtração, entre outras transformações possíveis, facilitando sobremaneira os cálculos. Na verdade, a idéia de logaritmo é muito simples, e pode-se dizer que o nome logaritmo é uma nova denominação para expoente, conforme veremos a seguir.

Assim, por exemplo, como sabemos que 42 = 16 , onde 4 é a base, 2 o expoente e 16 a potência, na linguagem dos logaritmos, diremos que 2 é o logaritmo de 16 na base 4. Simples, não é?
Nestas condições, escrevemos simbolicamente: log416 = 2.

Outros exemplos:
15
2 = 225, logo: log15225 = 2
6
3 = 216, logo: log6216 = 3
5
4 = 625, logo: log5625 = 4
7
0 = 1, logo: log71 = 0

2 - DEFINIÇÃO

Dados os números reais b (positivo e diferente de 1), N (positivo) e x , que satisfaçam a relação bx = N, dizemos que x é o logaritmo de N na base b. Isto é expresso simbolicamente da seguinte forma: logbN = x. Neste caso, dizemos que b é a base do sistema de logaritmos, N é o logaritmando ou antilogaritmo e x é o logaritmo.

Exemplos:
a) log28 = 3 porque 23 = 8.
b) log41 = 0 porque 40 = 1.
c) log39 = 2 porque 32 = 9.
d) log55 = 1 porque 51 = 5.

Notas:

1 - quando a base do sistema de logaritmos é igual a 10 , usamos a expressão logaritmo decimal e na representação simbólica escrevemos somente logN ao invés de log10N. Assim é que quando escrevemos logN = x , devemos concluir pelo que foi exposto, que 10x = N.

Existe também um sistema de logaritmos chamado neperiano (em homenagem a John Napier - matemático escocês do século XVI, inventor dos logaritmos), cuja base é o número irracional
e = 2,7183... e indicamos este logaritmo pelo símbolo ln. Assim,
logeM = ln M. Este sistema de logaritmos, também conhecido como sistema de logaritmos naturais, tem grande aplicação no estudo de diversos fenômenos da natureza.

Exemplos:
a) log100 = 2 porque 102 = 100.
b) log1000 = 3 porque 103 = 1000.
c) log2 = 0,3010 porque 100,3010 = 2.
d) log3 = 0,4771 porque 100,4771 = 3.
e) ln e = 1 porque e1 = e = 2,7183...
f) ln 7 = loge7

2 - Os logaritmos decimais (base 10) normalmente são números decimais onde a parte inteira é denominada característica e a parte decimal é denominada mantissa .

Assim por exemplo, sendo log20 = 1,3010, 1 é a característica e 0,3010 a mantissa.
As mantissas dos logaritmos decimais são tabeladas.

Consultando a tábua de logaritmo (qualquer livro de Matemática traz) , podemos escrever por exemplo que log45 = 1,6532. As tábuas de logaritmos decimais foram desenvolvidas por Henry Briggs, matemático inglês do século XVI. Observe que do fato de termos log45 = 1,6532 , podemos concluir pela definição de logaritmo que
101,6532 = 45.

3) Da definição de logaritmo, infere-se (conclui-se) que somente os números reais positivos possuem logaritmo. Assim, não têm sentido as expressões log3(-9) , log20 , etc.

4) É fácil demonstrar as seguintes propriedades imediatas dos logaritmos, todas decorrentes da definição:

P1) O logaritmo da unidade em qualquer base é nulo, ou seja:
log
b1 = 0 porque b0 = 1.

P2) O logaritmo da base é sempre igual a 1, ou seja: logbb = 1 , porque b1 = b.

P3) logbbk = k , porque bk = bk .

P4) Se logbM = logbN então podemos concluir que M = N. Esta propriedade é muito utilizada na solução de exercícios envolvendo equações onde aparecem logaritmos (equações logarítmicas).

P5) blogbM = M ou seja: b elevado ao logaritmo de M na base b é igual a M.

3 - PROPRIEDADES OPERATÓRIAS DOS LOGARITMOS

P1 - LOGARITMO DE UM PRODUTO

O logaritmo de um produto é igual a soma dos logaritmos dos fatores, ou seja:
logb(M.N) = logbM + logbN

Exemplo: log20 =log(2.10) = log2 + log10 = 0,3010 + 1 = 1,3010. Observe que como a base não foi especificada, sabemos que ela é igual a 10.

P2 - LOGARITMO DE UM QUOCIENTE

O logaritmo de uma fração ordinária é igual a diferença entre os logaritmos do numerador da fração e do denominador, ou seja:
logb(M/N) = logbM - logbN

Exemplo: log0,02 = log(2/100) = log2 - log100 = 0,3010 - 2,0000 = -1,6990. Do exposto anteriormente, podemos concluir que, sendo log0,02 = -1,6990 então 10-1,6990 = 0,02.

Da mesma forma podemos exemplificar:
log5 = log(10/2) = log10 - log2 = 1 - 0,3010 = 0,6990.

Observação: a não indicação da base, subtende-se logaritmos decimal (base 10).

Nota: Chamamos de cologaritmo de um número positivo N numa base b, ao logaritmo do inverso multiplicativo de N, também na base b. Ou seja:
cologbN = logb(1/N) = logb1 - logbN = 0 - logbN = - logbN.
(menos log de N na base b)
.
Exemplo: colog10 = -log10 = -1.

P3 - LOGARITMO DE UMA POTENCIA

Temos a seguinte fórmula, facilmente demonstrável: logbMk = k.logbM.
Exemplo: log5256 = 6.log525 = 6.2 = 12.

P4 - MUDANÇA DE BASE

Às vezes, para a solução de problemas, temos necessidade de mudar a base de um sistema de logaritmos, ou seja, conhecemos o logaritmo de N na base b e desejamos obter o logaritmo de N numa base a . Esta mudança de base, muito importante na solução de exercícios, poderá ser feita de acordo com a fórmula a seguir, cuja demonstração não apresenta dificuldades, aplicando-se os conhecimentos aqui expostos.

Exemplos:
a) log416 = log216 / log24 (2 = 4:2)
b) log864 = log264 / log28 (2 = 6:3)
c) log25125 = log5125 / log525 = 3 / 2 = 1,5. Temos então que 251,5 = 125.

Notas:
1 - na resolução de problemas, é sempre muito mais conveniente mudar um log de uma base maior para uma base menor, pois isto simplifica os cálculos.

2 - Duas conseqüências importantes da fórmula de mudança de base são as seguintes:
a) logbN = logN / logb (usando a base comum 10, que não precisa ser indicada).
b) logba . logab = 1

Exemplos:
a) log37 . log73 = 1
b) log23 = log3 / log2 = 0,4771 / 0,3010 = 1,5850

4 - A FUNÇÃO LOGARÍTIMICA

Considere a função y = ax , denominada função exponencial, onde a base a é um número positivo e diferente de 1, definida para todo x real.

Observe que nestas condições, ax é um número positivo, para todo x Î R, onde R é o conjunto dos números reais.Denotando o conjunto dos números reais positivos por R+* , poderemos escrever a função exponencial como segue:
f: R ® R+* ; y = ax , 0 < face="Symbol">¹
1

Esta função é bijetora, pois:
a) é injetora, ou seja: elementos distintos possuem imagens distintas.
b) É sobrejetora, pois o conjunto imagem coincide com o seu contradomínio.

Assim sendo, a função exponencial é BIJETORA e, portanto, é uma função inversível, OU SEJA, admite uma função inversa.

Vamos determinar a função inversa da função y = ax , onde 0 < face="Symbol">¹ 1.
Permutando x por y, vem:
x = ay \ y = logaxPortanto, a função logarítmica é então:
f: R+* ® R ; y = logax , 0 < face="Symbol">¹ 1.Mostramos a seguir, os gráficos das funções exponencial ( y = ax ) e logarítmica
( y = logax ), para os casos a > 1 e 0 < face="Symbol">¹ 1. Observe que, sendo as funções, inversas, os seus gráficos são curvas simétricas em relação à bissetriz do primeiro e terceiro quadrantes, ou seja, simétricos em relação à reta y = x.

Da simples observação dos gráficos acima, podemos concluir que:

1 - para a > 1, as funções exponencial e logarítmica são CRESCENTES.
2 - para 0 < face="Symbol">¹ 1, elas são DECRESCENTES.
3 - o domínio da função y = logax é o conjunto R+* .
4 - o conjunto imagem da função y = logax é o conjunto R dos números reais.
5 - o domínio da função y = ax é o conjunto R dos números reais.
6 - o conjunto imagem da função y = ax é o conjunto R+* .
7 - observe que o domínio da função exponencial é igual ao conjunto imagem da função logarítmica e que o domínio da função logarítmica é igual ao conjunto imagem da função exponencial. Isto ocorre porque as funções são inversas entre si.

Vamos agora, resolver os seguintes exercícios sobre logaritmos:

1 - Se S é a soma das raízes da equação log2 x - logx - 2 = 0 , então calcule o valor
de 1073 - 10S.

SOLUÇÃO:
Façamos logx = y; vem:
y2 - y - 2 = 0
Resolvendo a equação do segundo grau acima, encontramos: y = 2 ou y = -1.
Portanto,
logx = 2 OU logx = -1

Como a base é igual a 10, teremos:
log10x = 2 \ x = 102 = 100
log10x = -1 \ x = 10-1 = 1/10

As raízes procuradas são, então, 100 e 1/10.
Conforme enunciado do problema, teremos:
S = 100 + 1/10 = 1000/10 + 1/10 = 1001/10

Logo, o valor de 1073 - 10S será:
1073 - 10(1001/10) = 1073 - 1001 = 72
Resp: 72

2 - Calcule o valor de y = 6x onde x = log32 . log63 .

SOLUÇÃO:
Substituindo o valor de x, vem:
y = 6log32 . log63 = (6log63)log32 = 3log32 = 2
Na solução acima, empregamos a propriedade blogbM = M , vista anteriormente.
Resp: 2

3 - UEFS - Sendo log 2 = 0,301, o número de algarismos de 520 é:
a) 13
b) 14
c) 19
d) 20
e) 27

SOLUÇÃO:
Seja n = 520 . Podemos escrever, usando logaritmo decimal:
log n = log 520 = 20.log5

Para calcular o valor do logaritmo decimal de 5, ou seja, log5, basta lembrar que podemos escrever:
log 5 = log (10/2) = log 10 - log 2 = 1 - 0,301 = 0,699

Portanto, log n = 20 . 0,699 = 13,9800
Da teoria vista acima, sabemos que se log n = 13,9800, isto significa que a característica do log decimal vale 13 e, portanto, o número n possui 13 + 1 , ou seja 14 algarismos.
Portanto, a resposta correta é a letra B.

4 - UFBA - Considere a equação 10x + 0,4658 = 368. Sabendo-se que
log 3,68 = 0,5658 , calcule 10x.

SOLUÇÃO:
Temos: 10x + 0,4658 = 368
Daí, podemos escrever:
log 368 = x + 0,4658 \ x = log 368 - 0,4658
Ora, é dado que: log 3,68 = 0,5658, ou seja:
log(368/100) = 0,5658Logo, log 368 - log 100 = 0,5658 \ log 368 - 2 = 0,5658 , já que
log 100 = 2 (pois 102 = 100).
Daí, vem então:
log 368 = 2,5658

Então, x = log 368 - 0,4658 = 2,5658 - 0,4658 = 2,1
Como o problema pede o valor de 10x, vem: 10.2,1 = 21
Resp: 21

5 - Se log N = 2 + log 2 - log 3 - 2log 5 , calcule o valor de 30N.

SOLUÇÃO:
Podemos escrever:
logN = 2 + log2 - log3 - log52
logN = 2 + log2 - log3 - log25
logN = 2 + log2 - (log3 + log25)
Como 2 = log100, fica:
logN = (log100 + log2) - (log3 + log25)
logN = log(100.2) - log(3.25)
logN = log200 - log75
logN = log(200/75)

Logo, concluímos que N = 200/75
Simplificando, fica:
N = 40/15 = 8/3
Logo, 30N = 30(8/3) = 80
Resp: 30N = 80

Agora, resolva estes:

1 - UFBA - Sendo log2 = 0,301 e x = 53 . , então o logx é:
*a) 2,997
b) 3,398
c) 3,633
d) 4,398
e) 5,097

2 - UEFS - O produto das raízes da equação log(x2 -7x + 14) = 2log2 é:
01) 5
02) 7
*03) 10
04) 14
05) 35

3 - UCSal - Se 12n+1 = 3n+1 . 8 , então log2 n é igual a:
a) -2
*b) -1
c) 1/2
d) 1
e) 2

4 - UEFS - O domínio da função y = log [(2x-3)/(4-x)] é:
a) (-3/2,4)
b) (-4,3/2)
c) (-4,2)
*d) (3/2,4)
e) (3/2,10)

5 - UFBA - Determine o valor de x que satisfaz à equação log2 (x-3) + log2 (x-2) = 1.
Resp: 4

6 - UFBA - Existe um número x diferente de 10, tal que o dobro do seu logaritmo decimal excede de duas unidades o logaritmo decimal de x-9. Determine x.
Resp: 90

7 - PUC-SP - O logaritmo, em uma base x, do número y = 5 + x/2 é 2. Então x é igual a:
a) 3/2
b) 4/3
c) 2
d)5
*e) 5/2

8 - PUC-SP - Se x+y = 20 e x - y = 5 , então log(x2 - y2 ) é igual a:
a) 100
*b) 2
c) 25
d) 12,5
e) 1000
Sugestão: observe que x2 - y2 = (x - y) (x + y)

Geometrial Espacial, Cilindro

Introdução aos cilindros

O conceito de cilindro é muito importante. Nas cozinhas encontramos aplicações intensas do uso de cilindros. Nas construções, observamos caixas d'água, ferramentas, objetos, vasos de plantas, todos eles com formas cilíndricas. Existem outras formas cilíndricas diferentes das comuns, como por exemplo o cilindro sinuzoidal obtido pela translação da função seno.

Aplicações práticas: Os cilindros abaixo recomendam alguma aplicação importante em sua vida?

A Construção de cilindros

Um plano, uma circunferencia e uma retaSeja P um plano e nele vamos construir um círculo de raio r. Tomemos também um segmento de reta PQ que não seja paralelo ao plano P e nem esteja contido neste plano P.

Um cilindro circular é a reunião de todos os segmentos congruentes e paralelos a PQ com uma extremidade no círculo.

Observamos que um cilindro é uma superfície no espaço R3, mas muitas vezes vale a pena considerar o cilindro com a região sólida contida dentro do cilindro. Quando nos referirmos ao cilindro como um sólido usaremos aspas, isto é, "cilindro" e quando for à superfície, simplesmente escreveremos cilindro.

A reta que contém o segmento PQ é denominada geratriz e a curva que fica no plano do "chão" é a diretriz.

Em função da inclinação do segmento PQ em relação ao plano do "chão", o cilindro será chamado reto ou oblíquo, respectivamente, se o segmento PQ for perpendicular ou oblíquo ao plano que contém a curva diretriz.

Objetos geométricos em um "cilindro"

Num cilindro, podemos identificar vários elementos:

  • Base
    É a região plana contendo a curva diretriz e todo o seu interior. Num cilindro existem duas bases.
  • Eixo
    É o segmento de reta que liga os centros das bases do "cilindro".
  • Altura
    A altura de um cilindro é a distância entre os dois planos paralelos que contêm as bases do "cilindro".
  • Superfície Lateral
    É o conjunto de todos os pontos do espaço, que não estejam nas bases, obtidos pelo deslocamento paralelo da geratriz sempre apoiada sobre a curva diretriz.
  • Superfície Total
    É o conjunto de todos os pontos da superfície lateral reunido com os pontos das bases do cilindro.
  • Área lateral
    É a medida da superfície lateral do cilindro.
  • Área total
    É a medida da superfície total do cilindro.
  • Seção meridiana de um cilindro
    É uma região poligonal obtida pela interseção de um plano vertical que passa pelo centro do cilindro com o cilindro.

Extensão do conceito de cilindro

As características apresentadas anteriormente para cilindros circulares, são também possíveis para outros tipos de curvas diretrizes, como: elipse, parábola, hipérbole, seno ou outra curva simples e suave num plano.

Mesmo que a diretriz não seja uma curva conhecida, ainda assim existem cilindros obtidos quando a curva diretriz é formada por uma reunião de curvas simples. Por exemplo, se a diretriz é uma curva retangular, temos uma situação patológica e o cilindro recebe o nome especial de prisma.

Em função da curva diretriz, o cilindro terá o nome de cilindro: elíptico, parabólico, hiperbólico, sinuzoidal (telha de eternit).

Classificação dos cilindros circulares

  • Cilindro circular oblíquo
    Apresenta as geratrizes oblíquas em relação aos planos das bases.
  • Cilindro circular reto
    As geratrizes são perpendiculares aos planos das bases. Este tipo de cilindro é também chamado de cilindro de revolução, pois é gerado pela rotação de um retângulo.
  • Cilindro eqüilátero
    É um cilindro de revolução cuja seção meridiana é um quadrado.

Volume de um "cilindro"

Em um cilindro, o volume é dado pelo produto da área da base pela altura.

V = Abase × h

Se a base é um círculo de raio r, então:

V = r2 h

Exercício: Calcular o volume de um cilindro oblíquo com base elíptica (semi-eixos a e b) e altura h. Sugestão: Veja nesta mesma Página um material sobre a área da região elíptica.

Áreas lateral e total de um cilindro circular reto

Quando temos um cilindro circular reto, a área lateral é dada por:

Alat = 2 r h

onde r é o raio da base e h é a altura do cilindro.

Atot = Alat + 2 Abase
Atot = 2 r h + 2 r2
Atot = 2 r(h+r)


Exercício: Dado o cilindro circular equilátero (h=2r), calcular a área lateral e a área total.

No cilindro equilátero, a área lateral e a área total é dada por:

Alat = 2 r. 2r = 4 r2
Atot = Alat + 2 Abase
Atot = 4 r2 + 2 r2 = 6 r2
V = Abase h = r2. 2r = 2 r3

Exercício: Seja um cilindro circular reto de raio igual a 2cm e altura 3cm. Calcular a área lateral, área total e o seu volume.

  • Cálculo da Área lateral
    Alat = 2 r h = 2 2.3 = 12 cm2
  • Cálculo da Área total
    Atot = Alat + 2 Abase
    Atot = 12 + 2 22 = 12 + 8 = 20 cm2
  • Cálculo do Volume
    V = Abase × h = r2 × h
    V = 22 × 3 = × 4 × 3 = 12 cm33